Data Preprocessing Interview

Data Preprocessing Interview
šŸ“Š
Data Preprocessing Interview

Question: How do you handle missing values in a dataset during preprocessing?

Answer: Missing values can be handled using various techniques depending on the context:

  • Remove rows or columns with excessive missing data.
  • Impute missing values using statistical methods such as mean, median, or mode.
  • Use predictive modeling to estimate missing values.
  • For time series data, use forward-fill or backward-fill methods.
šŸ”§ 1 import pandas as pd
šŸ”§ 2 df = pd.read_csv('data.csv')
šŸ’” 3 # Impute missing values with mean
šŸ”§ 4 df.fillna(df.mean(), inplace = True)